{"id":59617,"date":"2019-06-05T13:01:17","date_gmt":"2019-06-05T11:01:17","guid":{"rendered":"http:\/\/www.prophesee.ai\/?page_id=59617"},"modified":"2019-06-05T13:01:17","modified_gmt":"2019-06-05T11:01:17","slug":"hvga-atis-corner-dataset","status":"publish","type":"post","link":"https:\/\/www.prophesee-cn.com\/en\/2019\/06\/05\/hvga-atis-corner-dataset\/","title":{"rendered":"Dataset Hvga Atis Corner"},"content":{"rendered":"
[et_pb_section fb_built=”1″ custom_padding_last_edited=”on|phone” _builder_version=”3.22.3″ background_image=”\/wp-content\/uploads\/2018\/03\/AI-Prophesee-machine-vision-datatset.jpg” background_position=”top_left” custom_padding=”54px|0px|200px|0px” custom_padding_tablet=”” custom_padding_phone=”” animation_style=”fade”][et_pb_row _builder_version=”3.25″ background_size=”initial” background_position=”top_left” background_repeat=”repeat” background_blend=”multiply” module_alignment=”center” custom_padding=”|||” animation_style=”fade” animation_direction=”top”][et_pb_column type=”4_4″ _builder_version=”3.25″ custom_padding=”|||” custom_padding__hover=”|||”][et_pb_text _builder_version=”3.27.4″ text_font=”Montserrat||||||||” header_font=”Montserrat|700||on|||||dotted” header_text_color=”#ffffff” header_font_size=”60px” header_line_height=”1.3em” background_size=”initial” background_position=”top_left” background_repeat=”repeat” background_layout=”dark” custom_margin=”|||” animation_style=”fade” header_font_size_tablet=”” header_font_size_phone=”40px” header_font_size_last_edited=”on|phone” header_text_shadow_style=”preset1″ locked=”off”]<\/p>\n
[\/et_pb_text][et_pb_divider color=”#ffffff” divider_weight=”6px” disabled_on=”on|on|off” _builder_version=”3.2″ max_width=”120px” animation_style=”slide” animation_direction=”top” animation_intensity_slide=”30%”][\/et_pb_divider][\/et_pb_column][\/et_pb_row][\/et_pb_section][et_pb_section fb_built=”1″ _builder_version=”3.22.3″][et_pb_row _builder_version=”3.25″ background_size=”initial” background_position=”top_left” background_repeat=”repeat” custom_padding=”||0px|||”][et_pb_column type=”4_4″ _builder_version=”3.25″ custom_padding=”|||” custom_padding__hover=”|||”][et_pb_text _builder_version=”3.27.4″ text_font=”Montserrat||||||||” text_text_color=”#1e2534″]<\/p>\n
[\/et_pb_text][\/et_pb_column][\/et_pb_row][\/et_pb_section][et_pb_section fb_built=”1″ _builder_version=”3.22.3″ background_color=”rgba(214,214,214,0.26)” custom_padding=”54px|0px|40px|0px”][et_pb_row _builder_version=”3.25″ custom_padding=”27px|0px|0px|0px||”][et_pb_column type=”4_4″ _builder_version=”3.25″ custom_padding=”|||” custom_padding__hover=”|||”][et_pb_text _builder_version=”3.27.4″ text_font=”||||||||” text_text_color=”#1e2534″ inline_fonts=”Montserrat”]<\/p>\n
<\/span><\/p>\n The purpose of this dataset is to evaluate Event-Based corner detectors. <\/strong><\/span><\/p>\n It consists of 7 sequences of increasing difficulty<\/strong>, from a standard checkerboard to a complex natural image. <\/span><\/p>\n Those sequences were taken using an <\/span>ATIS sensor<\/a> with a resolution of 480×360 pixels<\/strong>. It contains only recording of planar patterns<\/strong> to ensure that the evaluation of the detectors is less affected by triangulation errors.<\/span><\/p>\n <\/span><\/p>\n <\/span><\/p>\n [\/et_pb_text][\/et_pb_column][\/et_pb_row][et_pb_row _builder_version=”3.25″ background_size=”initial” background_position=”top_left” background_repeat=”repeat” custom_padding=”27px|0px|28px|0px”][et_pb_column type=”4_4″ _builder_version=”3.25″ custom_padding=”|||” custom_padding__hover=”|||”][et_pb_text _builder_version=”3.27.4″ text_font=”Montserrat||||||||” text_text_color=”#1e2534″]<\/p>\n [\/et_pb_text][\/et_pb_column][\/et_pb_row][\/et_pb_section][et_pb_section fb_built=”1″ _builder_version=”3.22.3″][et_pb_row _builder_version=”3.25″ background_size=”initial” background_position=”top_left” background_repeat=”repeat”][et_pb_column type=”4_4″ _builder_version=”3.25″ custom_padding=”|||” custom_padding__hover=”|||”][et_pb_text _builder_version=”3.27.4″ text_font=”Montserrat||||||||” text_text_color=”#1e2534″ custom_padding=”||0px|||”]<\/p>\n [\/et_pb_text][et_pb_divider color=”#000000″ divider_weight=”5px” _builder_version=”3.22.7″ max_width=”10%” module_alignment=”left” height=”0px”][\/et_pb_divider][et_pb_text _builder_version=”4.7.0″ text_font=”Montserrat||||||||” text_text_color=”#1e2534″ custom_padding=”||0px|||” hover_enabled=”0″ sticky_enabled=”0″]<\/p>\n <\/p>\n Each sequence contains the following elements:<\/p>\n <\/p>\n – <\/span>video.avi<\/strong>: Corresponding video of the events displayed in black and white with an\u00a0<\/span>accumulation time of 100 ms.<\/span><\/p>\n – event rate.csv<\/strong>: Number of events at each millisecond of the record.<\/p>\n – markers.csv<\/strong>: Position (pixel) of makers that delimit the extremities of the poster in the camera reference system. This information is given each 10ms. This allow us to remove events that were not generated by the poster.<\/p>\n For more technical information, please refer to our github repository.<\/a><\/p>\nFill out the form below to access the dataset download page.<\/strong><\/h4>\n
DATASET CONTENT<\/h3>\n